{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "tags": [ "remove-input" ] }, "outputs": [], "source": [ "from datascience import *\n", "%matplotlib inline\n", "path_data = 'https://raw.githubusercontent.com/ChemeketaCS/datasci-textbook/main/assets/data/'\n", "import matplotlib.pyplot as plots\n", "plots.style.use('fivethirtyeight')\n", "import math\n", "import numpy as np\n", "from scipy import stats" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "tags": [ "remove-input" ] }, "outputs": [], "source": [ "colors = Table.read_table(path_data + 'roulette_wheel.csv').column('Color')\n", "pockets = make_array('0','00')\n", "for i in np.arange(1, 37):\n", " pockets = np.append(pockets, str(i)) \n", "\n", "wheel = Table().with_columns(\n", " 'Pocket', pockets,\n", " 'Color', colors\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# The Central Limit Theorem\n", "Very few of the data histograms that we have seen in this course have been bell shaped. When we have come across a bell shaped distribution, it has almost invariably been an empirical histogram of a statistic based on a random sample.\n", "\n", "The examples below show two very different situations in which an approximate bell shape appears in such histograms." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Net Gain in Roulette\n", "In an earlier section, the bell appeared as the rough shape of the total amount of money we would make if we placed the same bet repeatedly on different spins of a roulette wheel. " ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Color | \n", "|
---|---|
0 | green | \n", "
00 | green | \n", "
1 | red | \n", "
2 | black | \n", "
3 | red | \n", "
4 | black | \n", "
5 | red | \n", "
6 | black | \n", "
7 | red | \n", "
8 | black | \n", "
... (28 rows omitted)
" ], "text/plain": [ "Pocket | Color\n", "0 | green\n", "00 | green\n", "1 | red\n", "2 | black\n", "3 | red\n", "4 | black\n", "5 | red\n", "6 | black\n", "7 | red\n", "8 | black\n", "... (28 rows omitted)" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "wheel" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Recall that the bet on red pays even money, 1 to 1. We defined the function `red_winnings` that returns the net winnings on one \\$1 bet on red. Specifically, the function takes a color as its argument and returns 1 if the color is red. For all other colors it returns -1." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "def red_winnings(color):\n", " if color == 'red':\n", " return 1\n", " else:\n", " return -1" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The table `red` shows each pocket's winnings on red." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "Color | Winnings: Red | \n", "|
---|---|---|
0 | green | -1 | \n", "
00 | green | -1 | \n", "
1 | red | 1 | \n", "
2 | black | -1 | \n", "
3 | red | 1 | \n", "
4 | black | -1 | \n", "
5 | red | 1 | \n", "
6 | black | -1 | \n", "
7 | red | 1 | \n", "
8 | black | -1 | \n", "
... (28 rows omitted)
" ], "text/plain": [ "Pocket | Color | Winnings: Red\n", "0 | green | -1\n", "00 | green | -1\n", "1 | red | 1\n", "2 | black | -1\n", "3 | red | 1\n", "4 | black | -1\n", "5 | red | 1\n", "6 | black | -1\n", "7 | red | 1\n", "8 | black | -1\n", "... (28 rows omitted)" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "red = wheel.with_column(\n", " 'Winnings: Red', wheel.apply(red_winnings, 'Color')\n", " )\n", "red" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Your net gain on one bet is one random draw from the `Winnings: Red` column. There is an 18/38 chance making \\$1, and a 20/38 chance of making -\\$1. This probability distribution is shown in the histogram below." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbEAAAEcCAYAAABJUoqBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3de1xUdf4/8NcRUxBQEkdEREQYL3jDQEj8YomlreQFg5DcvmVphtoXU7ywbZlWCwaaN5zclFZM2wBxxSJaWykLhLA0XPEyqZDXQUBURtCE+f3Rg/k1cjsDM8yc4fV8PHg8Oudz5pz3hzP46tw+R6isrNSAiIhIgjqZugAiIqLWYogREZFkMcSIiEiyGGJERCRZDDEiIpIshhgREUkWQ4yIiCSLIUZERJLFEHuAUqk0dQlGZen9A9hHS8E+WgZj95EhRkREksUQIyIiyWKIERGRZDHEiIhIshhiREQkWQwxIiKSLIYYERFJFkOMiIgkq7OpCzA3deiMk2dLTF2G0VSp71l0/wCgs8CvNVFHwb/2B1RW3cH6HftNXYbRqNVq2NramroMo1ry8nRTl0BE7YSnE4mISLIYYkREJFkMMSIikiyGGBERSRZDjIiIJMtkIRYbGwsHBwedn0GDBmnbNRoNYmNjMWTIEPTp0wfBwcE4deqUqcolIiIzZNIjMblcjjNnzmh/cnNztW0bN25EYmIi1q5di0OHDkEmkyEkJAS3b982YcVERGROTBpinTt3hpOTk/anV69eAH4/ClMoFFi8eDGmT58OLy8vKBQKVFVVIS0tzZQlExGRGTFpiBUXF2Po0KEYOXIkXnrpJRQXFwMASkpKoFKpEBQUpF3WxsYGAQEByM/PN1G1RERkbkw2Yoevry+2bt0KuVyOsrIyxMfHY9KkScjLy4NKpQIAyGQync/IZDJcvXq12fUqlco216ZWq9u8DnNm6f0DDPM9MHfso2VgH5snl8ubbTdZiD355JM6076+vvD29saePXswZswYAIAgCDrLaDSaBvMe1FKHW5J/7KRFD8vUEYadAtr+PTB3SqWSfbQA7GPbmc0t9nZ2dhgyZAjOnz8PJycnAEBpaanOMmVlZQ2OzoiIqOMymxCrqamBUqmEk5MT3Nzc4OTkhOzsbJ32I0eOwN/f34RVEhGROTHZ6cS//vWveOqpp9CvXz/tNbE7d+4gIiICgiAgMjIS69atg1wuh6enJxISEmBra4vQ0FBTlUxERGbGZCF25coVzJ07F+Xl5ejVqxd8fX1x8OBB9O/fHwAQFRWF6upqLFu2DJWVlfDx8UF6ejrs7e1NVTIREZkZk4VYUlJSs+2CICAmJgYxMTHtVBEREUmN2VwTIyIi0hdDjIiIJIshRkREksUQIyIiyTLZjR1ERM2pQ2ecPFti6jKMqkp9z+L72FkwbswwxIjILFVW3cH6HftNXYZRdYRh4Ja8PN2o6+fpRCIikiyGGBERSRZDjIiIJIshRkREksUQIyIiyWKIERGRZDHEiIhIshhiREQkWQwxIiKSLIYYERFJFkOMiIgkiyFGRESSxRAjIiLJYogREZFkMcSIiEiyRIdYTk4OysrKmmwvLy9HTk6OQYoiIiISQ3SITZ06FdnZ2U22f/vtt5g6dapBiiIiIhJDdIhpNJpm2+/du4dOnXh2koiI2k/n5hpv3bqFmzdvaqcrKipw8eLFBstVVlZi7969cHZ2NnyFRERETWg2xLZu3Yr3338fACAIAmJiYhATE9PoshqNBm+++abhKyQiImpCsyH2+OOPw9raGhqNBmvWrMHMmTMxYsQInWUEQUC3bt0wevRo+Pr6GrVYIiKiP2o2xB599FE8+uijAIC7d+9i6tSpGDZsWLsURkRE1JJmQ+yPVq5cacw6iIiI9NZkiH366acAgFmzZkEQBO10SyIiIgxTGRERUQuaDLEFCxZAEAQ888wz6NKlCxYsWNDiygRBYIgREVG7aTLEfv75ZwBAly5ddKaNZd26dXjnnXcwb948xMfHA/j9jse4uDjs3LkTlZWV8PHxQUJCAoYOHWrUWoiISBqaDLH+/fs3O21IBQUF2LlzZ4ObRjZu3IjExEQkJiZCLpfj/fffR0hICAoKCmBvb2+0eoiISBpMPsTGzZs3MW/ePGzevBkODg7a+RqNBgqFAosXL8b06dPh5eUFhUKBqqoqpKWlmbBiIiIyF6LvTgSAb775Bjt37kRxcTFu3LjRYCgqQRBw/PhxvQqoD6nHHntM+2A1AJSUlEClUiEoKEg7z8bGBgEBAcjPz8ecOXP02g4REVke0SGmUCjwxhtvoFevXvD19TXIdamdO3fi/Pnz2LZtW4M2lUoFAJDJZDrzZTIZrl692uQ6lUplm+tSq9VtXoc5s/T+AYb5Hpi7jtDHjvBd7Qh9bMt3VS6XN9suOsQSExMxbtw47N27V3uzR1solUqsWbMGX375ZbPrEwRBZ1qj0TSY90ctdbgl+cdOwtbWtk3rMGdqtdqi+1evrd8Dc6dUKi2+j5b+twjw79EQRF8TKy8vx8yZMw0SYADwww8/oLy8HGPHjoWjoyMcHR2Rk5OD7du3w9HRET179gQAlJaW6nyurKyswdEZERF1TKKPxLy9vfHrr78abMPBwcEYPXq0zryFCxfCw8MDS5YsgaenJ5ycnJCdnY1HHnkEAFBTU4MjR45gzZo1BquDiIikS3SIvffee4iIiMCECRMwfvz4Nm/YwcFB525EAOjWrRsefvhheHl5AQAiIyOxbt06yOVyeHp6IiEhAba2tggNDW3z9omISPpEh1hsbCy6d++OGTNmwMPDA66urrCystJZRhAEpKSkGKy4qKgoVFdXY9myZdqHndPT0/mMGBERAdAjxE6fPg1BENCvXz/cvXsXv/zyS4NlmrvhQowvvviiwfqae4cZERF1bKJD7MSJE8asg4iISG8mH7GDiIiotUQfiV28eFHUcq6urq0uhoiISB+iQ2zkyJGirnlVVFS0qSAiIiKxRIfYli1bGoRYbW0tSkpK8M9//hO9e/fG3LlzDV4gERFRU0SH2OzZs5tsW7x4MYKCglBVVWWQooiIiMQwyI0ddnZ2mD17NrZu3WqI1REREYlisLsTH3rooWZHlyciIjI0g4TYiRMn8OGHH2Lw4MGGWB0REZEobb478ebNm7h16xbs7OyQmJho0OKIiIiaIzrExo0b1yDEBEGAg4MDBg4ciGeeeabBgL5ERETGpNebnYmIiMwJh50iIiLJYogREZFkMcSIiEiyGGJERCRZDDEiIpIsUSFWU1ODtWvX4tChQ8auh4iISDRRIWZtbY0PPvgAly5dMnY9REREook+nThixAicP3/emLUQERHpRXSIvfXWW0hOTsZXX31lzHqIiIhEEz1ix6ZNm+Dg4ICIiAj07dsXAwYMgI2Njc4ygiAgJSXF4EUSERE1RnSInT59GoIgoF+/fgCAX3/9tcEyjQ0QTEREZCyiQ+zEiRPGrIOIiEhvfE6MiIgkS68Qq62tRUpKChYtWoTw8HD897//BQBUVlZi3759uHbtmlGKJCIiaozoELt58yYmTZqE+fPnY//+/Th48CDKy8sBAPb29njjjTfw97//3WiFEhERPUh0iK1evRqnT59Gamoqjh8/Do1Go22zsrLC1KlTcfDgQaMUSURE1BjRIfbFF1/glVdewRNPPNHoXYgeHh64ePGiQYsjIiJqjugQq6yshLu7e5PtGo0G9+7dM0hRREREYogOsf79+6OoqKjJ9pycHHh6ehqkKCIiIjFEh1hYWBiSk5ORk5OjnVd/WnHbtm34/PPP8dxzz4ne8EcffYSAgAC4urrC1dUVTz75pM6QVhqNBrGxsRgyZAj69OmD4OBgnDp1SvT6iYjI8ol+2Pn111/H0aNHMW3aNHh6ekIQBKxcuRIVFRVQqVQIDg7G/PnzRW+4b9++WL16NTw8PFBXV4dPP/0Us2fPxjfffIPhw4dj48aNSExMRGJiIuRyOd5//32EhISgoKAA9vb2reosERFZFtFHYg899BBSUlLw4YcfwtPTE4MGDcL9+/cxatQofPjhh9i1a5dew04FBwfjySefxMCBA+Hp6Yk333wTdnZ2KCgogEajgUKhwOLFizF9+nR4eXlBoVCgqqoKaWlpreooERFZHtFHYvXCwsIQFhZm0CJqa2vxr3/9C2q1Gn5+figpKYFKpUJQUJB2GRsbGwQEBCA/Px9z5swx6PaJiEia9A4xAPjvf/+rvZ3e1dUVw4YNa9XgvydPnsSkSZNQU1MDW1tbfPLJJxg2bBjy8/MBADKZTGd5mUyGq1evtqZkIiKyQHqF2N69e7Fq1SpcuXJF+7CzIAjo27cvVq1apfcRmlwux3fffYebN28iIyMDkZGR+Pzzz7XtDwajRqNpMSyVSqVeNTRGrVa3eR3mzNL7Bxjme2DuOkIfO8J3tSP0sS3fVblc3my76BDbvXs3Fi1aBLlcjtWrV8PT0xMajQbnzp1DcnIy5s+fj3v37mH27Nmii+vSpQsGDhwIABg9ejR++uknbN26FdHR0QCA0tJS7atfAKCsrKzB0dmDWupwS/KPnYStrW2b1mHO1Gq1RfevXlu/B+ZOqVRafB8t/W8R4N+jIYgOsfXr18PHxweff/45rK2tddrmzZuHKVOmYP369XqF2IPq6upw7949uLm5wcnJCdnZ2XjkkUcAADU1NThy5AjWrFnT6vUTEZFlEX134uXLlxEWFtYgwADA2toa4eHhuHLliugNv/3228jNzUVJSQlOnjyJ1atX4/vvv0dYWBgEQUBkZCQ2bNiAjIwMFBUVYcGCBbC1tUVoaKjobRARkWUTfSQ2ZMiQZm+quHLlCgYPHix6wyqVCq+88gpKS0vRvXt3DBs2DGlpaZg4cSIAICoqCtXV1Vi2bBkqKyvh4+OD9PR0PiNGRERaokNszZo1eOGFFzBq1CiEhITotO3duxfJyclITk4WvWGFQtFsuyAIiImJQUxMjOh1EhFRxyI6xDZv3gxHR0e8/PLLWLlyJdzd3SEIAs6fP4/r16/Dw8MDmzZtwqZNm7SfEQQBKSkpRimciIhIdIidPn0agiBo7xasv/7VtWtX9OvXD3fv3sWZM2d0PtOaZ8eIiIjEEh1iJ06cMGYdREREehN9dyIREZG5YYgREZFkMcSIiEiyGGJERCRZDDEiIpIshhgREUmW6BAbNWoUMjMzm2zPysrCqFGjDFIUERGRGKJD7Ndff232vTdqtVr7okwiIqL2oNfpxOZG4Pjll184OC8REbWrZkfs2LNnDz799FPtdEJCAnbu3NlgucrKShQVFWHy5MmGr5CIiKgJzYaYWq2GSqXSTt+8eRN1dXU6ywiCgG7duuGFF17AypUrjVMlERFRI5oNsXnz5mHevHkAgJEjRyIuLg5Tpkxpl8KIiIhaInoA4MLCQmPWQUREpDfRIVbv9u3buHTpEm7cuAGNRtOgfdy4cQYpjIiIqCWiQ+zGjRtYsWIF9u3bh9ra2gbtGo0GgiCgoqLCoAUSERE1RXSIvf766/j8888xb948jBs3Dg4ODsasi4iIqEWiQ+zrr7/G/Pnz8d577xmzHiIiItFEP+zcpUsXeHh4GLMWIiIivYgOsenTp+PgwYPGrIWIiEgvokPstddew7Vr1/Dqq6+ioKAA165dw/Xr1xv8EBERtRfR18R8fHwgCAKOHz+OlJSUJpfj3YlERNReRIfY8uXLmx0AmIiIqL2JDrGYmBhj1kFERKS3Vr3Zuba2FhUVFbh//76h6yEiIhJNrxD76aefMGPGDPTt2xeenp7IyckBAJSXl+PZZ5/Ft99+a5QiiYiIGiM6xH744QdMmTIFFy5cwKxZs3TGTXR0dERVVRV27dpllCKJiIgaIzrE3nnnHXh4eCA/Px9vvfVWg/bAwEAcPXrUoMURERE1R3SI/fTTT/jzn/8Ma2vrRu9SdHFx0XmBJhERkbGJDrFOnTqhU6emF1epVLCxsTFIUURERGKIDjFvb29kZWU12nbv3j2kpqbCz89P9IbXr1+PCRMmwNXVFR4eHggPD0dRUZHOMhqNBrGxsRgyZAj69OmD4OBgnDp1SvQ2iIjIsokOsSVLluDw4cNYtGgRTpw4AQC4du0avv76a0ybNg0XLlzA0qVLRW/4+++/x8svv4yvvvoKGRkZ6Ny5M2bMmIEbN25ol9m4cSMSExOxdu1aHDp0CDKZDCEhIbh9+7YeXSQiIksl+mHnCRMmYNu2bVi2bBn27NkDAIiMjIRGo0GPHj2wfft2jBkzRvSG09PTdaa3bduG/v37Iy8vD3/605+g0WigUCiwePFiTJ8+HQCgUCggl8uRlpaGOXPmiN4WERFZJtEhBgChoaGYMmUKsrOzce7cOdTV1cHd3R0TJ06EnZ1dmwqpqqpCXV2d9mWbJSUlUKlUCAoK0i5jY2ODgIAA5OfnM8SIiEi/EAOAbt26ITg42OCFrFy5EiNGjNBeV6u/01Emk+ksJ5PJcPXq1SbXo1Qq21yLWq1u8zrMmaX3DzDM98DcdYQ+doTvakfoY1u+q3K5vNl20SGWmZmJ7OxsxMfHN9q+bNkyTJw4EU899ZR+FQL4y1/+gry8PGRlZcHKykqn7cHb+TUaTbMDEbfU4ZbkHzsJW1vbNq3DnKnVaovuX722fg/MnVKptPg+WvrfIsC/R0MQfWPH5s2bcefOnSbba2pqsHHjRr0LiImJwd69e5GRkYEBAwZo5zs5OQEASktLdZYvKytrcHRGREQdk+gQKyoqgre3d5Pto0aNwunTp/Xa+IoVK5CWloaMjAwMGjRIp83NzQ1OTk7Izs7WzqupqcGRI0fg7++v13aIiMgyiT6deP/+fVRXVzfZXl1djbt374recHR0ND777DN88skncHBw0F4Ds7W1hZ2dHQRBQGRkJNatWwe5XA5PT08kJCTA1tYWoaGhordDRESWS3SIeXl5ISMjA4sWLWowckddXR0yMjIwZMgQ0Rvevn07AGhvn6+3YsUK7bvLoqKiUF1djWXLlqGyshI+Pj5IT0+Hvb296O0QEZHlEh1ir776KubOnYuIiAjExMRg6NChAIBTp04hLi4OP/74IxQKhegNV1ZWtriMIAiIiYnhCzmJiKhRokPsmWeewYULFxAbG4uDBw8C+D1k6u8WXLFiBcLDw41WKBER0YP0ek4sOjoaoaGhOHDgAIqLi6HRaODu7o6pU6fq3FlIRETUHkSF2N27d5Geno5BgwbBx8cHr732mrHrIiIiapGoW+y7du2KqKgo7cC/RERE5kD0c2JyuZwvvSQiIrMiOsSWL1+Ojz76CCdPnjRmPURERKKJvrHj8OHDkMlkGD9+PPz8/ODu7t7gTc6CICAhIcHgRRIRETVGdIglJSVp/zsvLw95eXkNlmGIERFRexIdYn984zIREZE5EH1NjIiIyNzo/VLMvLw8HD58GNevX8f8+fPh6ekJtVqN06dPQy6Xo3v37saok4iIqAHRIXbv3j289NJLyMzM1A419fTTT8PT0xNWVlYIDQ3FwoULER0dbcx6iYiItESfToyNjcVXX32F+Ph4FBQUQKPRaNusra0xY8YMfPnll0YpkoiIqDGiQyw1NRUvvvgiXn75ZfTs2bNBu1wuR3FxsSFrIyIiapboELt+/TpGjBjRZHvXrl2hVqsNUhQREZEYokPMycmp2SOtH3/8EW5uboaoiYiISBTRITZt2jR8/PHH+OWXX7TzBEEAAHz55ZdITU3FzJkzDV8hERFRE0SH2IoVK+Dq6orHHnsMc+fOhSAIWL9+PZ544gnMnj0b3t7eiIqKMmatREREOkSHmL29Pf79739jyZIluH79OqytrZGXlwe1Wo2YmBgcOHAA1tbWxqyViIhIh14PO1tbW2Pp0qVYunSpseohIiISrcUQu3v3LjIzM1FcXIyePXti8uTJ6NOnT3vURkRE1KxmQ0ylUmHKlCm4cOGC9uHmbt26ISUlBePGjWuXAomIiJrS7DWxd999F8XFxViwYAE+++wzxMbGwtraGsuXL2+v+oiIiJrU7JHYoUOHEBERgXfffVc7r3fv3pg7dy4uX74MFxcXoxdIRETUlGaPxFQqFfz9/XXmPfroo9BoNLh06ZJRCyMiImpJsyFWW1vb4Lb5+umamhrjVUVERCRCi3cnFhcX48cff9RO37p1CwCgVCphZ2fXYHkfHx8DlkdERNS0FkMsNjYWsbGxDeY/eHNH/TvGKioqDFcdERFRM5oNscTExPaqg4iISG/Nhthzzz3XXnUQERHpTfTYiURERObGpCGWk5ODWbNmYejQoXBwcMDu3bt12jUaDWJjYzFkyBD06dMHwcHBOHXqlImqJSIic2PSEFOr1fDy8kJcXBxsbGwatG/cuBGJiYlYu3YtDh06BJlMhpCQENy+fdsE1RIRkbkxaYhNmjQJb731FqZPn45OnXRL0Wg0UCgUWLx4MaZPnw4vLy8oFApUVVUhLS3NRBUTEZE5MdtrYiUlJVCpVAgKCtLOs7GxQUBAAPLz801YGRERmQu93ifWnlQqFQBAJpPpzJfJZLh69WqTn1MqlW3etlqtbvM6zJml9w8wzPfA3HWEPnaE72pH6GNbvqtyubzZdrMNsXqCIOhM1z9U3ZSWOtyS/GMnYWtr26Z1mDO1Wm3R/avX1u+BuVMqlRbfR0v/WwT492gIZns60cnJCQBQWlqqM7+srKzB0RkREXVMZhtibm5ucHJyQnZ2tnZeTU0Njhw50mBkfSIi6phMejqxqqoK58+fBwDU1dXh0qVLKCwsxMMPPwxXV1dERkZi3bp1kMvl8PT0REJCAmxtbREaGmrKsomIyEyYNMSOHTuGqVOnaqfrBxuOiIiAQqFAVFQUqqursWzZMlRWVsLHxwfp6emwt7c3YdVERGQuTBpigYGBqKysbLJdEATExMQgJiamHasiIiKpMNtrYkRERC1hiBERkWQxxIiISLIYYkREJFkMMSIikiyGGBERSRZDjIiIJIshRkREksUQIyIiyWKIERGRZDHEiIhIshhiREQkWQwxIiKSLIYYERFJFkOMiIgkiyFGRESSxRAjIiLJYogREZFkMcSIiEiyGGJERCRZDDEiIpIshhgREUkWQ4yIiCSLIUZERJLFECMiIsliiBERkWQxxIiISLIYYkREJFkMMSIikiyGGBERSRZDjIiIJEsSIbZ9+3aMHDkSTk5OeOyxx5Cbm2vqkoiIyAyYfYilp6dj5cqVWLp0KQ4fPgw/Pz+EhYXh4sWLpi6NiIhMzOxDLDExEc899xxeeOEFDB48GPHx8XByckJSUpKpSyMiIhMTKisrNaYuoin37t2Ds7MzduzYgRkzZmjnR0dHo6ioCJmZmSasjoiITM2sj8TKy8tRW1sLmUymM18mk6G0tNREVRERkbkw6xCrJwiCzrRGo2kwj4iIOh6zDjFHR0dYWVk1OOoqKytrcHRGREQdj1mHWJcuXeDt7Y3s7Gyd+dnZ2fD39zdRVUREZC46m7qAlixcuBDz58+Hj48P/P39kZSUhGvXrmHOnDmmLo2IiEzMrI/EAGDmzJmIjY1FfHw8AgMDkZeXh5SUFPTv37/N6/7HP/6Bp59+Gv3794eDgwNKSkpa/Mzu3bvh4ODQ4KempqbN9RhDa/oIAPv374e/vz969+4Nf39/HDhwwMiVtt7du3exbNkyDBw4EH379sWsWbNw+fLlZj9j7vtR3wf8T548iSlTpqBPnz4YOnQo1q5dC43GbG88BqBfH0tKShrdX19//XU7VqyfnJwczJo1C0OHDoWDgwN2797d4mekth/17aMx9qPZhxgAzJ07FydOnEBpaSm+/fZbjBs3ziDrvXPnDoKCgrBy5Uq9PtetWzecOXNG58fa2togNRlaa/r4ww8/4KWXXkJYWBi+++47hIWF4cUXX8TRo0eNWGnrxcTE4MCBA9ixYwcyMzNx+/ZthIeHo7a2ttnPmet+1PcB/1u3biEkJAS9e/fGoUOHEBcXh82bN2PLli3tXLl4rR3EYO/evTr7a/z48e1Usf7UajW8vLwQFxcHGxubFpeX4n7Ut4/1DLkfzf50ojEtWLAAAHDs2DG9PicIApycnIxRksG1po8KhQKBgYGIjo4GAAwePBjfffcdFAoFduzYYZQ6W+vmzZvYtWsXEhMTMWHCBADAtm3bMGLECHzzzTeYOHFik5811/34xwf8ASA+Ph7/+c9/kJSUhFWrVjVYPjU1FdXV1VAoFLCxsYGXlxfOnj2LrVu3YtGiRWZ5J6++fazXs2dPs9xnjZk0aRImTZoE4P//HTZHivtR3z7WM+R+lMSRmLmprq7G8OHD4eXlhfDwcPz888+mLsmgCgoKEBQUpDNv4sSJyM/PN1FFTTt+/Dh+++03nXr79euHwYMHt1ivOe7He/fu4fjx4w1+/0FBQU3254cffsDYsWN1/k944sSJuHr1qujTx+2pNX2s9/zzz8PT0xOTJ0/G/v37jVlmu5PafmwLQ+5Hhpie5HI5tmzZgj179mD79u3o2rUrnnrqKZw7d87UpRmMSqWSzAPmpaWlsLKygqOjo878luo11/3Ymgf8S0tLG12+vs3ctKaPdnZ2eOedd/Dxxx8jNTUV48ePx5w5c/DZZ5+1R8ntQmr7sTWMsR8t7nTiu+++i4SEhGaXOXDgAAIDA1u1fj8/P/j5+Wmn/f39ERgYiG3btuH9999v1Tr1Zew+AqZ/wFxsH5vSUr3msB+bo+/vv7HlG5tvTvTpo6OjI1577TXt9OjRo1FRUYGNGzciPDzcqHW2JynuR30YYz9aXIhFRkbi2WefbXaZfv36GWx7VlZW8Pb2xvnz5w22zpYYu49OTk4mf8BcbB8LCgpQW1uL8vJy9OrVS9tWVlaGgIAA0dszxX5sTGse8O/du3ejywMwy0EBDDWIgY+Pj6g7/qRCavvRUNq6Hy0uxBwdHRucWjImjUaDkydPYvjw4e22TWP3ccyYMcjOzsb//d//aee19wPmYvvo7e2Nhx56CNnZ2QgLCwMAXL58GWfOnNGrXlPsx8b88QH/Pw56nZ2djWnTpjX6GT8/P7z99tuoqanR3l2ZnZ0NZ2dnuP8CFXsAAAnuSURBVLm5tUvd+mhNHxtz4sQJydzkIYbU9qOhtHU/duhrYiqVCoWFhfjll18AAGfOnEFhYSFu3LihXWbatGlYvXq1djouLg7/+c9/UFxcjMLCQixatAgnT57ESy+91O71i9GaPr766qs4fPgw1q9fj7Nnz2L9+vX47rvvEBkZ2e71t6RHjx54/vnn8dZbb+Gbb77Bzz//jPnz52PYsGF4/PHHtctJaT8uXLgQe/bsQXJyMs6cOYMVK1boPOC/evVqnX/sQ0NDYWNjgwULFqCoqAgZGRnYsGEDFixYYLanofTt4549e5CamoozZ85AqVRi8+bN2L59O1555RVTdaFFVVVVKCwsRGFhIerq6nDp0iUUFhZqHyOwhP2obx+NsR8t7khMH0lJSVi7dq12uv70VWJiImbPng0AuHDhAlxcXLTL3Lx5E1FRUSgtLUX37t0xcuRIZGZmwsfHp32LF6k1fawfGeXdd99FbGws3N3dkZSUBF9f3/YtXqS//e1vsLKywpw5c1BTU4Px48fjww8/hJWVlXYZKe3HmTNnoqKiAvHx8VCpVBg6dKjOA/7Xrl3DhQsXtMv36NED+/btQ3R0NCZMmAAHBwcsXLgQixYtMlUXWqRvHwEgISEBFy9ehJWVFTw8PLBlyxazvh527NgxTJ06VTsdGxuL2NhYREREQKFQWMR+1LePgOH3o1m/T4yIiKg5Hfp0IhERSRtDjIiIJIshRkREksUQIyIiyWKIERGRZDHEiIhIshhiZFHS0tLg4OCAnJwcnfmlpaVwcHCAXC5v8JmPPvoIDg4OKCoqAvD7kFcjRowwap3tsQ1DCg4O1nmJYb9+/TB58mRkZmYadDv1L020pOGkyLgYYmRR6l+Y+uBbgnNzc9GtWzdcv34dZ8+ebdDWs2dPDB06FACwfPlyfPLJJ0atsz22YWjDhg3DwYMHcfDgQWzevBlqtRrPP/+82b4slTqGDj1iB1keZ2dnDBgwoEGI5eTkIDAwEGfPnkVubi4GDRqkbTty5AjGjh2rHdrH3d3d6HW2xzYMzd7eHmPGjAHw+/iafn5+GD58OHbv3m22o7mQ5eORGFmccePGoaCgAPfv39fOy83NRUBAAB599FGdgDt37hyuXbumM+L9g6f66k9xffzxx3jvvfcwePBg9O/fH+Hh4bh8+bLOtkeMGIFXXnkFe/fuhZ+fH/r27YvHH38cR44c0VmuLdu4c+cOlixZAnd3d/Tr1w+zZ89Gfn5+g9NwP/30E2bMmAF3d3c4Oztj1KhRWLp0aSt/qw25uLigV69euHTpUoO2jIwMPPHEE3B2dkb//v3xwgsvaMfT+2M/li5dCnd3d7i4uGDWrFm4cuWKweqjjoEhRhYnICAAVVVV2jc1V1ZW4tSpUxg7dizGjh2rE2L1187qT0M2Z/369bhw4QK2bNmCuLg4FBQUYN68eQ2Wy83NxZYtW/DGG28gKSkJtbW1CA8PR2VlpUG2sXjxYnzyySd47bXXsGvXLsjl8gbLVFVVYebMmbCyssLWrVuRkpKC5cuX6wQ7ADg4OLR6YOfbt2+joqICAwYM0JmflJSE//3f/8XgwYOxc+dObNiwAadOnUJwcDBu376t04/k5GQsXLiwyX4QtYSnE8ni/PG6mI+PD44cOYKuXbvC29sbPXv2xKVLl1BSUgI3Nzfk5uaie/fuom6ycHV1xfbt27XT5eXlePPNN3H16lU4Oztr59++fRvff/89HBwcAPz+frYJEybg4MGD2tfFtHYbSqUSqampePvttxEVFQUAmDBhAu7cuYO///3v2s8plUpUVlZi9erVOq+XqR/0uZ6VlZXOQMktqQ/BS5cuYdWqVXj44YexcOFCbXtVVRXefvttzJ49G4mJidr5Pj4+8PX1xa5du7BgwQIolUqkpaXhzTffxOuvvw4ACAoKglqtRlJSkuh6iHgkRhZnwIABcHFx0R5l1YdZly5d4OnpCZlMpj0ay83Nhb+/v6h/yCdPnqwz7eXlBQANTqf5+flpA6y55VqzjaNHj0Kj0WD69Ok6yz04PXDgQPTo0QOvv/46Pvvssya3XV5eji1btrRYFwDk5eWhV69e6NWrF7y9vZGVlYXk5GSdI7GCggLcunULzz77LO7fv6/9cXFxgVwu1/7ejx49irq6OoSEhOhsY+bMmaJqIarHECOLFBAQgLy8PGg0GuTm5mLs2LHatvrrYpcvX8avv/4q+g3QDz/8sM50ly5dAAA1NTXNLte1a9dGl2vNNlQqFYCGb/rt3bu3znSPHj1w4MAB9OnTB9HR0Rg+fDjGjh2L/fv3t1hDU4YPH47s7Gx8/fXX2Lx5M+zs7PDiiy9q3z4MANevXwfwe6jWB179T1FRESoqKvTqB1FLeDqRLFJAQABSU1NRUFCAn3/+GX/961+1bWPHjsWOHTv0uh5mLurfgHv9+nXY2tpq5z/4WnsAGDlyJHbt2oX79+/j2LFjWL9+PebMmYPvv/9ee4SnDzs7O4wePRoA4OvrCzc3N0ybNg1xcXFISEgAAPTs2RMAsHXrVu0jCw+uQ99+EDWHR2JkkeqD6YMPPoBGo9HeGg78HmLnzp3Dvn370K1bN+0/zFLg6+sLQRAaHFH961//avIznTt3xpgxY/DGG2+grq6uwXNyrTV+/Hg8/fTTSE5O1t5B6efnB3t7e5w/fx6jR49u8FP/sLmvry86deqEffv26awzPT3dILVRx8EjMbJIgwYNgkwmQ1ZWFry9vbVHAMDvRyh2dnbIyspCYGAgHnroIRNWqh+5XI6wsDC89957qKurg7e3Nw4fPoysrCwAQKdOv/9/aVZWFv7xj38gODgYbm5uuHPnDrZt26bzrBcAODo6IiIiQvR1sQf95S9/QWZmJjZs2ID4+Hh0794da9asQXR0NMrLy/HEE0+ge/fuuHr1KnJycvA///M/CAsLg1wuR2hoKP72t7+hrq4OjzzyCLKzs/Hvf/+77b8k6lAYYmSxAgICsH//fp3rYcDvd+SNGTMG2dnZoq+HmZMNGzbAzs4OGzduxG+//YbAwEAkJCQgPDwc3bt3BwB4eHjAxsYG8fHxUKlUsLOzwyOPPIJ9+/bBxcVFu67a2lrU1ta2uhYvLy/MnDkTu3btwtKlS9GnTx/MmTMHLi4u2LRpE9LS0vDbb7/B2dkZAQEBOneB1vdj8+bN2n5s374dTz31VOt/OdThCJWVlRpTF0FEbbNp0yasWrUKhYWFcHV1NXU5RO2GR2JEEpOVlYVTp05hxIgR6NSpk/bh6pCQEAYYdTgMMSKJsbOzwxdffIEPPvgAd+7cgbOzM+bPn4+YmBhTl0bU7ng6kYiIJIu32BMRkWQxxIiISLIYYkREJFkMMSIikiyGGBERSRZDjIiIJOv/AZMM+Cx8+rAIAAAAAElFTkSuQmCC\n", "text/plain": [ "Color | \n", "
---|
Purple | \n", "
Purple | \n", "
Purple | \n", "
White | \n", "