
1 Platformer Guide

2 SETUP

Unzip the Platformer.zip file to a convenient location.

Start a new Gamemaker project. Name it Platformer.

NOTE: THE INSTRUCTIONS IN THIS GUIDE ASSUME YOU HAVE BUILT SHOOTINGGALLERY, SPACERESCUE AND

SPACESHOOTER. THEY RAPIDLY STEP THROUGH TECHNIQUES AND IDEAS YOU WERE EXPOSED TO PREVIOUSLY.

3 BACKGROUND AND ROOMS

Load the image background_sky.png as a
Background.

Make a new room called room1 and set it to use that
background. Make sure it is Tiled horizontally.

Duplicate it to make roomEnd

Load the image blocks1.png as a background.

Click Tile Set checkbox

TILES ARE SMALL BACKGROUND OR FOREGROUND
IMAGES DESIGNED TO BE “PAINTED” ON A ROOM.

Set the tile properties to the values shown to the left.
The goal is to get the black tile borders to perfectly
line up with the square tiles:

Also, load the image blocks2.png as a background.

Click Tile Set checkbox and use the same Tile
Properties settings as you did for blocks1

4 SPRITES

Load the sprites for the various “terrain” objects in
the games.

Each sprite should have its Origin at 0, 0 and should
have Precise Collisions (Actually, the sprites that take
up the full square do not need precise checking, but
the rest definitely do.)

Load snake.png image as sprite_snake. Then add
snake_1.png to snake_5.png as extra subimages.

Set precise collisions and place the Origin one pixel
BELOW the center of the sprite (48, 64).

AN ORIGIN BELOW THE SPRITE TENDS TO WORK
WELL FOR GAMES THAT INVOLVES “STANDING” ON
GROUND. WHEN AN OBJECT IS PLACED ON THE
GROUND IT IS JUST BARELY TOUCHING AND NOT
INSIDE THE GROUND.

Do the same to make sprite_snakeDie from the 6
images of the snake disappearing.

Bring in stand.png as a sprite.

Set the Origin to one pixel below the middle of the
character (24, 64)

Click Modify Mask. Click the Rectangle radio button
and type in the coordinates shown to the right.

This defines the gray box as the part of this sprite that
collides.

ANIMATED SPRITES THAT CHANGE A LOT FROM
FRAME TO FRAME CAN CAUSE NIGHTMARES WHEN
USED WITH PRECISE COLLISIONS. ONE SECOND YOU
ARE NEXT TO A WALL AND THEN YOU TURN AROUND
AND PART OF YOUR HAIR IS TOUCHING THE WALL
AND NOW YOU ARE STUCK INSIDE IT.
DEFINING A RECTANGULAR OR ELLIPTICAL COLLISION
AREA CAN USUALLY ELIMINATE THIS ISSUE.

Bring in jump.png as a sprite and do the same steps
for Origin and the collision mask.

We want every “player” sprite to use the same
collision mask so that the process of switching a sprite
can never cause a new collision to happen.

Bring in run.png as a sprite. Then add run_1.png to
run_6.png as subimages.

Set up the same Origin and collision mask.

Make sure the images are in an order that looks
somewhat natural when you preview it. You can use
the blue arrow above the subimages to change the
order if need be.

Do the same for in climb.png to climb_2.png and
die.png to die_11.png

Make sure to use the same Origin and collision mask
as for the other player sprites

5 BASIC MOVEMENT

Make an object_block that is Solid. For now it will be
visible, later we will turn that off.

WHEN TWO THINGS COLLIDE AND ONE OF THEM IS
SOLID, THEY ARE BOTH RESET TO THEIR POSITION
JUST BEFORE THE COLLIDED.

Go to room1

Make sure that the Snap to grid is enabled and that
the snapX and snapY are both 32. This will make it
much easier to design the room.

 Place an object_block

Grab a corner and stretch it out. This is much easier
than drawing hundreds of individual blocks.

Stretch one block to be the left side, one to be the
right, one to be the top and two to make a bottom
with a hole (hole should be 5 or fewer squares wide).
Place another block as an obstacle to jump over:

Make an object_player

The Create event should set variables that will control
the speed of the player. Making them variables makes
it easier to adjust them in one place. It also makes it
much easier to make a powerup that makes the player
move faster or jump higher.

We will use run_speed, jump_speed, climb_speed,
and gravity_amount to control the player’s
movement actions.

ANYTIME YOU TYPE THESE VARIABLE NAMES WATCH
OUT FOR THE SPELLING!

The Left keyboard event :

If at relative position (-run_speed, 0) there is not
object object_block

¶ Jump relative to position (-run_speed, 0)

The idea is we check to see if there is a block
“run_speed” pixels to the left (-x is left, +x is right). If
not, we jump there. The keyboard event does this
every step so it looks like we are moving constantly.

NOTE: THIS STYLE PLATFORM MOVEMENT IS THE
EASIEST TO PULL OFF. IT IS POSSIBLE TO MAKE MORE
COMPLEX MOVEMENT WHERE YOU ACCELERATE UP
TO MAX SPEED AND TAKE A SECOND OR TWO TO
STOP MOVING WHEN YOU STOP PRESSING A
BUTTON (MARIO STYLE). BUT THAT STYLE
MOVEMENT REQUIRES A GOOD BIT MORE
COMPLEXITY AND CODE.

Do the same for keyboard Right, but use run_speed in
the Check Object and Jump to Position

(+ means right, - means left)

Place a player in the room and test the movement. At
this point you cannot fall or jump, but you should
move side to side and not get stuck in walls.

Make leaving the room restart the current room.

KeyPress Space should check to see if there is
something solid just below the player (2 pixels below
makes things a little more forgiving than just 1 pixel).

We only want the player to be able to jump if they are
on the ground.

If so, set the vertical speed to jump_speed

Without gravity, the player will just fly up. So we also
need to turn that on. But gravity should only be on
when the player is in the air… we cannot just turn it
on when it is created.

GRAVITY FOR THINGS STANDING ON THE GROUND
SHOULD NOT BE ON. IT WILL CAUSE THEM TO KEEP
TRYING TO ACCELERATE DOWN AND COLLIDING
WITH THE FLOOR. THIS WORKS WELL IN REAL LIFE,
BUT NOT IN GAMEMAKER.

Instead, in Step we will check to see if gravity should
be on because the player jumped or walked off a cliff.

We will assume gravity needs to be on and then turn
it back off if we realize there is something solid below
the player.

Step Event:
Set the gravity to gravity_amount in direction 270
Gravity amount is never going to be relative (it is
either on or off, the amount does not increase or
decrease)
(Assume it needs to be on)

If relative position (0, 2) gives a collision with Only
solid objects

¶ Set the gravity to 0 in direction 0
(Ooops, standing on something, turn it off)

Last we need to stop the player when they hit a block.
In Collision with object_block

First Move to Contact in direction direction maximum
distance speed

When you collide with a solid object you bounce back
to where you used to be... this ooches us right up next
to the thing we hit.
We are using the built in variables direction and speed
to say “keep moving your current direction until you
are just touching the block; don’t go more than your
speed number of pixels”

Now we need to turn off the vertical speed – but only
if there is a block right above or below you (not if you
slammed sideways into a wall).

¶ if at relative position (0, -2) there is object
object_block

o set the vertical speed to 0

¶ if at relative position (0, 2) there is object
object_block

o set the vertical speed to 0

BASIC JUMP RECIPE:
WHEN STANDING, GRAVITY IS OFF AND YOU CAN
JUMP. WHEN YOU JUMP, START MOVING UP AND
TURN ON GRAVITY. WHEN YOU HIT THE FLOOR, STOP
VERTICAL MOTION AND KILL GRAVITY.

Details:

Try the game again. You should be able to jump over
the obstacle and the pit. Make sure you can move
normally after landing and you fall if you walk off an
edge.

6 VIEWS

Reopen room1 and make it 2048 wide.

Reposition the walls/floors so it looks like the picture
shown to the right.

HINTS:

¶ YOU CAN USE THE MAGNIFYING GLASS ICONS
ABOUT THE ROOM WINDOW TO ZOOM IN AND
OUT.

¶ YOU CAN MOVE THE ROOM AROUND BY
HOLDING SPACE WHILE CLICK DRAGGING.

¶ YOU ALSO CAN DRAG AROUND THE WINDOW
SHOWN IN THE MIMIMAP TO SCROLL AROUND
THE ROOM:

Click the Views tab and Enable the Use of Views

A VIEW IS A PICTURE OF ALL OR PART OF A ROOM
THAT IS TAKEN EACH STEP AND DISPLAYED TO THE
PLAYER. IT IS HOW WE CAN SHOW ONLY PART OF A
ROOM TO A PLAYER OR SHOW A MINIMAP VIEW OF
THE ROOM.

The initial settings should look like what is shown to
the right.

It says “take a picture that starts at 0, 0 and is
640x480” (The View in room settings).
Then “draw it on the screen 640x480 pixels wide at 0,
0” (The Port on screen settings)

A white outline shows what the view covers:

Change the View in room so that it includes the player

Try the game. Notice you have a smaller game
window now.

Try changing the Port on Screen to 1280x960
(assuming your monitor is that big at least). And run
the game. Now you are taking a picture that is
640x480 and blowing it up to 1280x960 so everything
looks blocky.

Try changing the Port on Screen to 320x240. Now the
picture gets shrunk in half when we draw it for the
player.

Reset the Port on Screen to 640x480. Generally you
want the View size (picture size) to match the Port
size (drawing size)

Also, the view does not follow the player around. To
fix that, go back to the Views tab of the room and
select Object following to be the player.

The Hbor and Vbor are how close the object can get
to an edge before the view scrolls. Set those to half
the view width and height (320x240) to keep the
player in the center.

The Hsp and Vsp can limit the speed at which the view
can move (if you want to slowly pan across the room
say). -1 means “no limit” to the speed.

Try the game – make sure you can run around and the
camera follows you.

7 PLATFORMS, LADDERS & EXIT

Make object_floor with object_block as its parent

It should be solid.

We don’t need to add any extra code – player collides
with block; floor “is a kind of block” because block is
its parent; thus player collides with floor. The floor
just has a smaller sprite.

Place a few object_floor’s in as platforms. Make sure
you can jump on them and move around. Hitting the
platforms from below or the side will stop you.

MAKING PASS THROUGH PLATFORMS YOU CAN
JUMP UP THROUGH AND THEN LAND ON IS
POSSIBLE, BUT REQUIRES SIGNIFICANTLY TRICKIER
LOGIC.

Make object_ladder it is not solid – the player can
climb through it

Now go back to object_player.

Colliding with a ladder should set the vertical speed
to 0
This will stop any jump/fall that is happening.

We also need to turn off gravity while hanging on a
ladder.

Go back to the step event. Add a check to see if there
is a ladder right where the player is and if so, turn off
gravity.

If at relative position (0,0) there is object
object_ladder

¶ Set the gravity to 0 in direction 0

The overall logic is:
 Assume gravity is on.
 If there is floor beneath us, turn it off.
 If we are on top of a ladder, turn it off.

If you are on a ladder and there is not a block right
above you, you should be able to climb up.

Up button should do:

¶ If at relative position (0,0) there is object
object_ladder
o If at relative position (0, -climb_speed) there

is not object object_block
o Jump relative to position (0, -climb_speed)

-y is up, +y is down

Down should be the same, but with climb_speed
instead of -climb_speed
(+: down, -: up)

¶ If at relative position (0,0) there is object
object_ladder
o If at relative position (0, climb_speed) there

is not object object_block
o Jump relative to position (0, climb_speed)

Place a ladder in the room. Try jumping on to it and
climbing up and down.

Make an object_next_room

Go back to object_player

When it collides with next_room, send the player to
the next room.

Place an object_room_next at the far side of the level.

(Your roomEnd is proabably empty… that is OK – you
can make more rooms or a “Game Over – You Win”
message later)

8 OBSTACLES

Make object_death

We will use it to make “spike pits” or other areas
that can kill the player if they fall into.

Make object_die

It will show the player’s death animation

In Create:

Start moving in no directions with speed set to 0
Set Gravity to 0 with direction 0
Set the sprite to sprite_die with subimage 0 and
speed 0.5

The player will be turning into this object – we
need this code to make sure that they are
stopped once they turn into the dying object.

Playing the sprite frames at 0.5 speed makes the
animation last a little longer.

Animation End should restart the room

Go back to the player

Make colliding with object_death Change
Instance to turn the player into an object_die
Set Perform events to yes to make sure we do
the create code on the object_die

Go place an object_death in an easy place to
test. Try colliding with it and make sure the
player dies. Once you know it works you can
move it to a place where the player might fall.

Make object_monsterBlock

We will use it to make boundaries that monsters
bounce off of but that do not affect players.

It should be solid, but not use the normal block
as its parent (do not want the player to interact
with it).

Make an object_snake

Create event:
Set the sprite to sprite_snake with subimage 0
and speed 0.5
Set the horizontal speed to 3

If the snake gets to an edge it needs to turn
around. We will check for a collision 2 pixels
down and about 12 forward from the current
location (relative). If there is nothing there (Not
a collision), that means the floor is gone and the
snake needs to turn around.

Step event should check:
If NOT Check Collision x: hspeed * 4 and y: 2
relative
Reverse Horizontal Direction

For x: we are using hspeed * 4 instead of 12
because hspeed will include the sign – when the
snake is going right, its hspeed is 3. Once it turns
and goes left, its hspeed is -3. By multiplying that
by 4, we get either 12 or -12 for x and measure
12 pixels in front of whatever direction the snake
is pointing.

hspeed is the built in variable that has just the
horizontal part of an object’s velocity
vspeed has just the vertical part

In End Step we will transform the sprite to go
the right way. The sprite is facing to the left, so
when moving right (hspeed > 0) we need to flip
the sprite.

If hspeed is greater than 0

¶ Scale the sprite with 1 in the xdir, 1 in the
ydir, rotate over 0, and mirror horizontally
(Show it flipped)

else

¶ Scale the sprite with 1 in the xdir, 1 in the
ydir, rotate over 0, and no mirroring
(Show it normal)

END STEP IS DONE AFTER MOST OTHER EVENTS,
RIGHT BEFORE THINGS ARE DRAWN.

Finally, for both object_block and
object_monsterBlock, reverse horizontal when
we collide

Place some snakes in the room. Also place a
monsterBlock or two. Make sure snakes go back
and forth, bump off walls and turn around at
edges.

You may want to turn off views or make the
view really large so you don’t have to run around
to see everything.

Make an object_snakeDie

When it is created, set its sprite to the same
sprite but using speed 0.5

When the animation ends, destroy it

Go back to object_player

When a player and snake collide, we will check
their relative height on the screen (y position). If
the player is at least 10 pixels above the snake,
the snake is smashed and the player bounces up.
Otherwise the player dies.

Note that comparing their y locations compares
the Origins of their sprites. Since both have
sprites with Origins at their “feet” this works
well. If both had Origins at their head, we would
have to compensate for the different heights of
the sprites.

Collision Event with object object_snake:

If y + 10 is less than other.y

¶ For other object (snake): change the
instance into object object_snakeDie, yes
performing events

¶ Set the vertical speed (for self, the player) to
jump_speed

Else

¶ Change the instance (self, the player)
into object_die, yes performing events

y gets smaller as you go up. So if one object has
a smaller y than another, it is above the other.

“y” is player’s y position. “y + 10” is 10 down
from the player’s y.

“other” here is the snake the player is colliding
with. So “other.y” is the snake’s y position.

Go test that running into a snake restarts the
room but landing on one kills the snake and
bounces you.

9 TILES

We will use tiles to provide some visual appeal
to the plain objects.

First go turn off Visible for the object_block,
object_death, object_ladder, object_floor,
object_next_room and object_monsterBlock

INVISIBLE OBJECTS SHOW IN THE ROOM
EDITOR BUT NOT THE GAME.

Go to room1

Click the Tiles tab

Drag the separator bar between the tiles and the
room preview to the left. You may want to make
the whole window larger as well so you can see
all the tiles and still see a good chunk of the
room.

Click on a tile to use it.

Then click in the room to place it. Tiles never
interact with objects. They are just pretty
window dressing to cover up simple objects.

SHIFT-CLICK AND DRAG TO RAPIDLY “PAINT” A
WHOLE ROW OF TILES.

CNTRL-RIGHT CLICK TO RAPIDLY DELETE TILES

Click a different tile to switch what you are
“painting” on the room.

Note that edges should have tiles one square
past where the actual object_block is. Notice
how the player extends almost a full square in
either direction from its center. Right now, the
player would still think that there is a collision
with block below it (its collision area is almost
the entire rectangle). A few more pixels to the
right, and the player rectangle no longer would
be over the block.

You can turn the visibility of objects or tiles on
and off using this control. Try it out.

Our objects are translucent, so you should be
able to leave them on. But if they were opaque,
you might need to turn them off to check your
tiles.

Try painting tiles over your floors, something like
shown to the right:

Try to not have large runs of the same tile –
many of the tiles have multiple similar options.
Do a pass where you cover the floor with one
style, then pick something similar and replace a
few with that. Then pick a third style and replace
other squares with that one…

You can add multiple tile layers.

HIGHER DEPTH LAYERS ARE DRAWN FIRST,
THEN LOWER NUMBER LEVELS ARE DRAWN ON
TOP OF THEM.

THIS IS THE SAME DEPTH SCALE USED BY
OBJECTS. NEGATIVE DEPTH WILL DRAW IN
FRONT OF MOST OBJECTS.

Add a layer at -1000.

Use this negative depth layer to paint things that
should be on top of the player and snakes.

Tufts of grass, flowers and the ladder tiles
(especially the ladder) all look nice in front of
objects.

Many of these images are from the second
tileset:

Note that the ladder tiles extend a square past
the actual ladder. This will prevent the player
from standing on the ladder object with just two
pixels of their toes covered by the ladder tile.

Use the drop down to switch between layers and
the checkbox to hide layers other than the one
you are working on or reveal them all.

There is no magic way to draw multi tile
patterns. You just have to place the tiles one by
one for things like signs, clouds, etc…

If you were making your own graphics, you could
make multiple tile sheets that each used
different size tiles.

10 PLAYER SPRITE

THIS STEP IS OPTIONAL: We have saved changing the player sprite for last because it is fairly complex. Also, it just isn’t

essential for the gameplay. Yes, it will look slicker if the sprite is animated, but that is much less important than

everything we have done up until now.

Deciding exactly which sprite to draw depends
on whether we are in the air, whether we are
trying to go left or right, whether we are on a
ladder, etc… The logic is best handled all in one
place.

An End Step event is a good spot to select the
sprite after all the movement code has run.

You do not need to put the comment blocks
(yellow triangles) in – they are just to help you
see what is going on. Though any time you do
something this complex, leaving reminders of
what you were doing is a good idea.

Part 1: Turn on or off sprite mirroring depending
on if pressing a direction:

If expression keyboard_check(vk_left) is true

¶ Transform Sprite with scale 1 in the xdir,
1 in the ydir, rotate over 0, and mirror
horizontally

if expression keyboard_check(vk_right) is true

¶ Transform Sprite with scale the sprite
with 1 in the xdir, 1 in the ydir, rotate
over 0, and no mirroring

If neither is pressed, we will just keep using
whatever was last set

keyboard_check(BUTTON) is true if that button
is being pressed. You need to use vk_left to
mean “left arrow” and “vk_right” to mean right
arrow.
This should look like:

See here for more info on keyboard_check

http://docs.yoyogames.com/index.html?page=source%2Fdadiospice%2F002_reference%2Fmouse,%20keyboard%20and%20other%20controls%2Fkeyboard%20input%2Findex.html

Part 2: If they are in the air, show jumping sprite.
We know they are in the air (falling/jumping) if
gravity is on.

If gravity is not equal to 0

¶ Set the sprite to sprite_jump with
subimage -1 and speed 1

SETTING SUBIMAGE TO -1 SAYS “DO NOT
CHANGE THE SUBIMAGE”. IF YOU SET THE SUB
IMAGE TO 0 DURING ANIMATIONS, IT WILL
KEEP RESETTING THE ANIMATION BACK TO THE
FIRST FRAME AND YOU WILL NEVER SEE THE
ANIMATION PLAY.

IF YOU ARE SETTING AN ANIMATED SPRITE BUT
MIGHT NOT BE ACTUALLY CHANGING WHAT
SPRITE YOU ARE USING (WAS RUNNING LAST
STEP, AM STILL RUNNING), YOU NEED TO USE -1
FOR SUBIMAGE SO YOU DON’T RESET TO
FRAME 0 EVERY STEP.

…

Part 3: Not in air… are we on a ladder?

else

¶ If at relative position (0,0) there is object
object_ladder
o Set the sprite to sprite_climb with

subimage -1 and speed 0
This sets to climb sprite… now check
to see if we need to animate it

o If expression
keyboard_check(vk_up) or
keyboard_check(vk_down) is true
Á Set variable image_speed to 0.4
This makes the animation play if we
are pressing up or down.

IMAGE_SPEED IS THE BUILT IN VARIABLE FOR
HOW FAST THE FRAMES OF A SPRITE ARE
PLAYING. SETTING IT DIRECTLY IS A NICE WAY
TO PLAY OR STOP AN ANIMATION WITHOUT
HAVING TO WORRY ABOUT WHICH SPRITE
EXACTLY YOU ARE WORKING WITH.

…

…

Part 4: Not in air and not on ladder, must be
standing or running

¶ else
o If expression

keyboard_check(vk_right) or
keyboard_check(vk_left) is true
Á Set the sprite to sprite_run with

subimage -1 and speed 0.5
If left or right is pressed, we are
running… so play that

o else
Á Set the sprite to sprite_stand

with subimage -1 and speed 0
Otherwise standing

…

Go back to the start of this section… make sure
all the actions are laid out correctly.
Then go test out the animations. If something is
wonky, double check the appropriate section of
code.

If everything ends up horribly broken, use an Exit
this Event action at the start to just turn all the
code off so you can focus on other stuff.

…

11 EXTRAS

Time to improve on the game.

Before you start making changes, make a backup copy of your project. Copy the WHOLE Platformer.gmx folder, or

whatever you called it, to another location. You should spend a couple of hours experimenting and trying to add some

features to the game.

Focus on adding new features (objects and behaviors) not on endless tweaking of the tiles or building out a ton of

rooms.

The ExtraArt folder has additional sprites you can use. If you are familiar with basic graphics programs you can also use

the image editor in gamemaker to customize sprites. Do not spend lots of time trying to get graphics just right – I want

you to focus more on making things happen than looking pretty.

Note that the sprites are arranged in sheets. To get one sprite out of a sheet:

Make a Sprite, then Edit it. In edit window, do File Ą
Create from Strip

Pick the sheet. You probably want to Remove
Background color

Set the width and height large enough to get the image you want. Click with the mouse to position the selection
rectangle. Or use the vertical/horizontal offset to fine tune. Note that the selection border inverts colors it is over.
These pixels ARE included. The image shows the watermellon selected with one empty pixel on each side and no
empty space at the bottom of the sprite.

IDEAS:
You do not have to do all of these – you do not even have to do any of them if you have your own ideas. As you add

features, try to think about what is going to add “fun” to the game. Don’t worry about adding features like lives and

score unless you think they are going to add “fun” to the game. Focus on changes to the gameplay.

¶ Pickups that change something about the player (speed, vulnerability)

¶ Experiment with different movement code

¶ Bad guys that appear/start moving when you get too close. Start with an invisible object that has a large circle

for a sprite (200+ pixel wide circle). When it collides with the player, it turns into the bad guy and starts moving.

¶ Portals (touching obj_portal_red could make the player move to obj_portal_blue.x and obj_portal_blue.y)

¶ You can’t jump on bad guys, but have an attack. It needs to be balanced so you can’t just easily kill all the snakes

to get through the level. Maybe something that creates a small, quick explosion in front of you (easier than a

fancy club swing) that kills snakes, but there is a cooldown so if you miss on the first try the snake will probably

get you.

